Block	Topic
1	Number and Place Value
2	Addition and Subtraction
3	Multiplication and Division
4	Fractions
5	Decimals and Money
6	Geometry
7	Statistics
8	Measure - Time
9	$\begin{gathered} \text { Measure - Length, Perimeter \& Area, } \\ \text { Mass \& Capacity } \end{gathered}$

st Bede's

Catholic Primary School

Year 4

Block 1			
Number and Place Value			
Substantive Knowledge National Curriculum	Ready to Progress	Key Performance Indicators	Sequence of learning Detailed in Planning Overview
Count in multiples of 25 and 1000 NB multiples of 6, 7 and 9 will be covered in the multiplication unit.		- Can count in multiples of 25 and 100 and explain the link between the two amounts	*Introduction to resources *Building 4 -digit numbers out of a range of concrete resources *Counting in 1000s to gain confidence
Find 1000 more or less than a given number		- Can find 1000 more than a given number and explain which digit changes - Can find 1000 less than a given number and explain which digit changes	*Composing 4-digit numbers and discussing column value of each digit of these numbers (including the role of o in a number) *Standard and non-standard partitioning
Count backwards through zero to include negative numbers		- Can count backwards in a range of multiples to include negative numbers and understand the value of the digits	in a thousand, 100 tens in 1000, 1000 ones in 1000 and using this to represent a 4-digit number
Recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones)	4NPV-1 Know that 10 hundreds are equivalent to 1 thousand, and that 1,000 is 10 times the size of 100 ; apply this to identify and work out how many 100s there are in other four-digit multiples of 100 4NPV-2 Recognise the place value of each digit in four-digit numbers, and compose and decompose four-digit numbers using standard and nonstandard partitioning	- Can identify the number of thousands, hundreds, tens and ones in a 4 -digit number	number * Ordering and comparing numbers beyond 1000 *Counting in 1000s, 500s, 100s, 50s and 25s * Positioning numbers on a blank and scaled number lines with a variety of starting and ending points and a range of increments. *Substantial problem solving *Rounding numbers to the nearest 10,
Order and compare numbers beyond 1000	4NPV-3 Reason about the location of any four-digit number in the linear number system, including identifying the previous and next multiple of	- Can identify the larger of two 4-digit numbers and explain reasoning	*Problem Solving *Reading and representing numbers on a number line to include negative numbers

	1,000 and 100 , and rounding to the nearest of each. 4NPV-4 Divide 1,000 into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in multiples of 1,000 with $2,4,5$ and 10 equal parts	- Can position 4-digit numbers on a number line and explain reasoning about where they are positioned	* Reading and writing Roman numerals up to 100
Identify, represent and estimate numbers using different representations	4NPV-1 Know that 10 hundreds are equivalent to 1 thousand, and that 1,000 is 10 times the size of 100 ; apply this to identify and work out how many 100s there are in other four-digit multiples of 100	- Can use equipment to represent numbers and to explain reasoning about the size of numbers	
Round any number to the nearest 10,100 or 1000	4NPV-3 Reason about the location of any four-digit number in the linear number system, including identifying the previous and next multiple of 1,000 and 100 , and rounding to the nearest of each.	- Can round numbers to the nearest 10 - Can round numbers to the nearest 100 - Can round numbers to the nearest 1000 - Can explain the rules of rounding	
Solve number and practical problems that involve all of the above and with increasingly large positive numbers		- Solve problems involving place value, including word problems and problems linked to money and measure	
Read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value.		- Can read Roman numerals to 100 - Can understand how the numeral system developed over time	

Block 2			
Addition and Subtraction			
Substantive Knowledge National Curriculum	Ready to Progress	Key Performance Indicators	Sequence of learning Detailed in Planning Overview
Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate	4NF-3 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 100),	- Can use place value to calculate mentally - Can add and subtract multiples of 1,10 , 100 and 1000 - Can subtract by finding the difference - Can calculate mentally by reordering - Can calculate mentally by compensating - Can use a written methods to add two 4digit numbers, including bridging 10 and 100 - Can use a written methods to subtract two 4-digit numbers, including bridging 10 and 100 - Can use a written methods to add and 3 and 4 -digit number together, including bridging 10 and 100 - Can use a written methods to subtract a 3digit number from a 4-digit number, including bridging 10 and 100 - Can reflect on when it is appropriate to use a standard written method in an addition or subtraction calculation with up to 4 digits	*Scaling known facts by 10,100 and 1000 to create related facts *Adding multiples of $1,10,100$ and 1000 to a number with no bridging *Adding 1 digit to a 3 or 4 -digit number using bridging *Adding a multiple of 10 to a 3 or 4 -digit number using bridging *Adding a multiple of 100 to a 4-digit number using bridging *Subtracting multiples of $1,10,100$ and 1000 from a number with no bridging *Subtracting 1 digit from a 3 or 4 -digit number using bridging *Subtracting a multiple of 10 from a 3 or 4 -digit number using bridging *Subtracting a multiple of 100 from a 4-digit number using bridging *Using the concept of 'finding the difference' within subtraction *Understanding the inverse relationship between addition and subtraction and generating fact families
Estimate and use inverse operations to check answers to a calculation		- Can estimate the answer of an addition or subtraction up to 4 digits Can use addition and subtraction to calculate the inverse	*Using inverse operations within addition and subtraction to check calculations *Reordering calculations to look for known facts and aid efficiency
Solve addition and subtraction two-step problems in contexts, deciding which operations		- Can identify whether a word problem needs to be solved using addition, subtraction or combination of both	* Compensating *Estimation *Standard written method of addition *Standard written method of subtraction

and methods to use and why.		- Can identify the most appropriate method of calculation to use to solve a problem - Can use a calculation skill in a problem using units of measure (km, m, cm, mm, $\mathrm{kg}, \mathrm{g}, \mathrm{l}, \mathrm{ml}$, hours, minutes and seconds)	*Adjusting (consid this method) *Reflecting on the *Solve addition and contexts, deciding and why.	which children can grasp and retain ost efficient strategy subtraction two step problems in wich operations and methods to use
Block 3				
Multiplication and Division				
Substantive Knowledge National Curriculum	Ready to Progress	Key Performance Indicators		Sequence of learning Detailed in Planning Overview
Recall multiplication and division facts for multiplication tables up to 12×12	4NF-1 Recall multiplication and division facts up to 12×12 and recognise products in multiplication tables as multiples of the corresponding number.	- Can explain how to use known facts to derive others - Can recall the 2 x 5 x 10 x tables from Year 2 - Can recall the 3x 4x 8x tables from Year 3 - Can recall the $6 x$ table - Can recall the 7x table - Can recall the 9x table - Can recall the 11x table - Can recall the $12 x$ table - Can derive related division facts - Understands that division cannot be done in any order		*Recap 2, 5 and 10 times tables including patterns and generalisations *Recap 4, 8 and 3 times tables including patterns and generalisations *Teach 6, 12, 9, 11 and 7 times tables *Links and the development of multiplication *Multiplying by 10 and 100 *Dividing by 1,10 and 100 *Using scaling numbers by 10 and
Use place value, known and derived facts to multiply and divide mentally, including: multiplying by o and 1 ; dividing by 1 ; multiplying together three numbers	4NF-3 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 100)	- Understands how a multiplication fact can be used to multiply by a multiple of 10 - Understands how a multiplication fact can be used to multiply by a multiple of 100 - Understands how to multiply 3 one-digit numbers together - Understands the effect of multiplying by 1 and o - Understands the effect of dividing by 1 - Understands how a multiplication fact can be used to solve a division calculation		100 to solve calculations using known facts *Using arrays investigate fact families and the commutative law and inverse relationship of multiplication and division *Solve missing box calculations using known facts and inverse operations *Find factors of numbers using a systematic approach *Multiplying 3 numbers using the most efficient strategy

	number 10 or 100 times the size. 4MD-3 Understand and apply the distributive property of multiplication		*Solving problems including using scaling and correspondence *Strategies for mental calculation (partitioning, doubling and halving, compensating) Consolidation and problem solving with mental strategies *Written strategy for multiplication (Check school calculation policy) * Written strategy for division if stated in school calculation policy *Solve a range of problems using multiplication and division using an efficient strategy. *Solve multi-step problems involving all 4 operations. Choose an efficient method for calculating and explain which methods have been used.
Recognise and use factor pairs and commutativity in mental calculations	4MD-2 Manipulate multiplication and division equations, and understand and apply the commutative property of multiplication.	- Can identify factors of a 2-digit number - Understands that multiplication can be done in any order	
Multiply two-digit and three-digit numbers by a one-digit number using formal written layout	4MD-1 Multiply and divide whole numbers by 10 and 100 (keeping to whole number quotients); understand this as equivalent to making a number 10 or 100 times the size.	- Can use a formal written method to multiply TU by U - Can use a formal written method to multiply HTU by U	
Solve problems involving multiplying and adding, including using the distributive law to multiply two-digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to mobjects.	4NF-2 Solve division problems, with two-digit dividends and one-digit divisors, that involve remainders	- Can solve word problems involving multiplication - Can solve word problems involving division - Can solve scaling problems involving measures - Can solve correspondence problems e.g. There are 3 starters, mains and desserts on a menu, how many possible meals could you have?	

Block 4			
Fractions			
Substantive Knowledge National Curriculum	Ready to Progress	Key Performance Indicators	Sequence of learning Detailed in Planning Overview
Recognise and show, using diagrams, families of common equivalent fractions	$4 \mathrm{~F}-1$ Reason about the location of mixed numbers in the linear number system $4 \mathrm{~F}-2$ Convert mixed numbers to improper fractions and vice versa.	- Can use multiplication to generate equivalent fractions. - Can simplify fractions using common factors	*Recapping children's prior knowledge of fractions *Investigating using pictorial or practical resources how to make a whole *Placing fractions on a 0-1 number line
Solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number		- Can use unit fractions to solve a problem. - Can use non-unit fractions to solve a problem.	improper fractions on a number line Converting mixed numbers and improper fractions *Equivalent fractions using multiplication *Finding fractions of an amount (unit and non-unit fractions)
Add and subtract fractions with the same denominator	$4 \mathrm{~F}-3$ Add and subtract improper and mixed fractions with the same denominator, including bridging whole numbers	- Can add and subtract fractions with a common denominator	*Adding fractions with the same denominator (total may exceed one whole) *Subtracting fractions with the same denominator (start number may be more than one whole)

Block 5			
Decimals and Money			
Substantive Knowledge National Curriculum	Ready to Progress	Key Performance Indicators	Sequence of learning Detailed in Planning Overview
Count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten.		- Understands hundredths are dividing an object or a number into 100 equal parts. - Understand tenths are dividing an object or a number into 10 equal parts. - Understands hundredths can be made by dividing tenths into 10 equal parts. - Can find and place hundredths on a number line. - Can use hundredths in money and measure - Can compare and order numbers to 2dp	*Recap year 3 decimals unit and look at counting in tenths *Using money, base 10 or a bead string investigate a hundredth as a fraction and a decimal (1 out of10o beads is $1 / 100$ or 0.01 because we have 1 in the hundredth column *Count up and down in hundredths *Compare and order decimals *Positioning hundredths on a number line and using this to order and compare decimals to 2 dp *Rounding Decimals *Dividing a 1 or 2 -digit number by 10 or 100 and reading the answer as ones, tenths and hundredths *Identifying where 0.5 , 0.25 and 0.75 would be on a number line and discussing that these are positioned at $1 / 2,1 / 4$ and $3 / 4$ *Solve problems involving money
Recognise and write decimal equivalents of any number of tenths or hundredths		- Can identify and calculate $\frac{1}{10}$ as a decimal - Can identify the pattern when finding other tenths. - Can identify and calculate $\frac{1}{100}$ as a decimal - Can identify the pattern when finding other hundredths.	
Recognise and write decimal equivalents to $1 / 4$, $1 / 2$ and $3 / 4$		- Can recall decimal equivalent to $1 / 2$ - Can recall decimal equivalent to $1 / 4$ - Can recall decimal equivalent to $3 / 4$	
Find the effect of dividing a one- or two-digit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths	4MD-1 Multiply and divide whole numbers by 10 and 100 (keeping to whole number quotients); understand this as equivalent to making a number 10 or 100 times the size.	- Can explain the effect of dividing a one-digit number by 10 - Can explain the effect of dividing a two-digit number by 10 - Can explain the effect of dividing a one-digit number by 100 - Can explain the effect of dividing a two-digit number by 100	
Round decimals with one decimal place to the nearest whole number		- Can identify the nearest whole number to a one decimal place number.	

Block 6			
Geometry			
Substantive Knowledge National Curriculum	Ready to Progress	Key Performance Indicators	Sequence of learning Detailed in Planning Overview
Compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes	4G-2 Identify regular polygons, including equilateral triangles and squares, as those in which the side-lengths are equal and the angles are equal. Find the perimeter of regular and irregular polygons.	Can recall and recognise in a variety of shapes that: - an equilateral triangle has three equal sides and three equal angles - isosceles triangles have two equal sides and two equal angles - right angled triangles have one right angle - scalene triangles have no equal sides and no equal angles - triangles cannot have more than one obtuse angle - squares have four equal sides and four right angles - rectangles have two pairs of equal and parallel sides and four right angles - parallelograms have two pairs of equal and parallel sides - rhombuses have four equal sides, two pairs of parallel sides - trapeziums have one pair of parallel sides - kites have two pairs of equal sides which are adjacent, two equal angles - Can recall the names of other polygons and their associated numbers of sides	*Recap 2D shape - names and properties of shapes (regular and irregular shapes) *Recognising angles (obtuse, acute and right angles) *Comparing angles *Identifying angles in shapes *Investigating triangles, classifying and sorting *Investigating quadrilaterals, classifying and sorting *Investigating symmetrical patterns (one line of symmetry, 2 lines of symmetry, line of symmetry parallel to gridlines, line of symmetry at an angle to the gridlines) *Exploring symmetry in shapes *Complete a simple symmetric figure with respect to a specific line of symmetry
Identify acute and obtuse angles and compare and order angles up to two right angles by size		- Can identify acute angles on their own and within shapes - Can identify obtuse angles on their own and within shapes - Can compare two or more angles up to 180°	*Using coordinates to position points and to read the position of points using the language of x and y axis *Can use knowledge of properties of shapes to plot a missing coordinate of a given
Identify lines of symmetry in 2-D shapes presented in different orientations	4G-3 Identify line symmetry in 2D shapes presented in different orientations. Reflect shapes in a line of symmetry	- Can recall and recognise in different shapes that: - A square has four lines of symmetry - A rectangle has two lines of symmetry - A rhombus has two lines of symmetry	polygon *Can use the language of coordinates and positional

	and complete a symmetric figure or pattern with respect to a specified line of symmetry.	- A parallelogram has no lines of symmetry - A trapezium may or may not have a line of symmetry - A kite has one line of symmetry - An equilateral triangle has three lines of symmetry - An isosceles triangle has one line of symmetry - A regular polygon has the same of lines of symmetry as it has sides	language to describe how a shape has been translated *Can translate a shape when given coordinates and positional language *Substantial problem solving
Complete a simple symmetric figure with respect to a specific line of symmetry		Can complete a pattern drawn on a square grid with: - one line of symmetry drawn parallel to the gridlines - one line of symmetry drawn at an angle to the gridlines - two lines of symmetry	
Describe positions on a 2-D grid as coordinates in the first quadrant		- Can distinguish between the x and y axis. - Can draw a pair of axes in one quadrant with equal scales and integer labels.	
Describe movements between positions as translations of a given unit to the left/right and up/down	4G-1 Draw polygons, specified by coordinates in the first quadrant, and translate within the first quadrant	- Can describe position of a vertex of a 2D shape in the first quadrant using a pair of coordinates. - Can translate a shape using left/right and up/down	
Plot specified points and draw sides to complete a given polygon		- Can use properties of shape to complete the vertices of a simple shape.	

Block 7			
Statistics			
Substantive Knowledge National Curriculum	Ready to Progress	Key Performance Indicators	Sequence of learning Detailed in Planning Overview
Interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs.	No specific Ready to Progress statements for statistics but use the opportunity to consolidate prior statements as appropriate e.g 4NPV4 Divide 1,00o into 2, 4, 5 and 10 equal parts, and read	- Understands which is the best method of recording data e.g. compare data presented in a bar chart and line graph and reason as to which is the most effective - Can use an appropriate scale when representing data - Can answer questions from a range of different graphs e.g. In which months was the temperature below $10^{\circ} \mathrm{C}$?	*Draw and interpret pictograms *Draw and interpret bar charts *Answer questions from a range of different graphs - using discrete data *Solve comparison, sum and difference problems using information presented in charts *Introduce continuous data and discuss how this is different to discreet *Represent continuous data as a line graph (link to science/topic)
Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.	scales/number lines marked in multiples of 1,000 with $2,4,5$ and 10 equal parts	- Can answer questions from a bar chart that involve comparison, sum and difference - Can answer questions from a pictogram that involve comparison, sum and difference - Can answer questions from a table that involve comparison, sum and difference - Can answer questions from a line graph that involve comparison, sum and difference	*Read and interpret a range of line graphs and answer questions on the data * Answer questions from a range of different graphs - using discrete data *Collect continuous data and choose how to present this and with what scale *Problem solving

Block 8			
Measure - Time			
Substantive Knowledge National Curriculum	Ready to Progress	Key Performance Indicators	Sequence of learning Detailed in Planning Overview
Convert between different units of measure [for example, kilometre to metre; hour to minute]		- Knows and understands the relationships between familiar units of measurement - Can use multiplication and division to aid conversion - Can convert an hour into minutes and vice versa - Can suggest the most appropriate unit of measure	*Reading and writing time on analogue clocks *Reading and writing time on digital clocks and converting time between analogue and digital 12-hour clocks *Reading and writing time on 24 -hour clocks and converting from 12 -hour to 24 -hour digital clocks and analogue clocks *Solve problems involving converting from hours to minutes; minutes to seconds; years to
Read, write and convert time between analogue and digital 12- and 24hour clocks		- Can read and understand 24-hour time - Can relate 24 hr notation to am and pm Can covert 12 hr into 24 hour and vice versa	*Making links and consolidation
Solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days		- Can solve problems involving familiar conversions Can interpret the answer in more than one measure	

Block 9			
Measure - Length, Perimeter, Area, Capacity \& Mass			
Substantive Knowledge National Curriculum	Ready to Progress	Key Performance Indicators	Sequence of learning Detailed in Planning Overview
Convert between different units of measure [for example, kilometre to metre; hour to minute]	No specific Ready to Progress statements for Length and Perimeter but use the opportunity to consolidate prior statements as appropriate e.g. 4NPV-3 Reason about the location of any four-digit number in the linear number system, including identifying the previous and next multiple of	- Knows and understands the relationships between familiar units of measurement - Can use multiplication and division to aid conversion. - Can convert km into m and vice versa. - Can convert l into ml and vice versa. - Can convert g into kg and vice versa - Can suggest the most appropriate unit of measure.	*Recap tools and language of measure. *Recap units of measure and which units are used to measure different things. *Convert between different units of measure [for example, kilometre to metre, mm to cm] *Convert between different units of measure [g to kg] *Convert between different units of
Measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres.	1,000 and 100 , and rounding to the nearest of each. NPV-4 Divide 1,0oo into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in multiples of 1,000 with $2,4,5$ and 10 equal parts	- Can measure sides of a rectangle to calculate the perimeter. - Can generalise about the perimeter of a rectangle using words and symbols. - Can use the formulae $2(\mathrm{~L}+\mathrm{W})$ to calculate perimeter of a rectangle. Can work out the perimeter of irregular shapes.	measure [l to ml] *Estimate, compare and calculate different measures *Problem solving around the concepts covered *Measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres.
Find the area of rectilinear shapes by counting squares	4MD-1 Multiply and divide whole numbers by 10 and 100 (keeping to whole number quotients); understand this as equivalent to making a number 10 or 100 times the size.	- Can relate area to arrays and multiplication. - Can find the area of a rectangle by counting squares. Can generalise about the area of a rectangle using words and symbols.	*Find the area of rectilinear shapes by counting squares
Estimate, compare and calculate different measures, including money in pounds and pence		- Can use decimal place value knowledge to compare different measures. - Can calculate with measures This is within Decimals \& Money Block	

